Cover Image

PENGARUH VARIASI KOMPOSISI CAMPURAN TANAH LIAT (CLAY) DENGAN POLIAKRILAMIDA TERHADAP SOLIDIFIKASI/STABILIISASI LOGAM Cr(VI) TERHADAP KUAT TEKAN

Anggun Pertiwi M, Jon Efendi

Abstract


Limbah logam berat merupakan produk samping dari kegiatan industri. Keberadaan limbah logam berat dilingkungan sangat berbahaya karena bersifat toksik dan memiliki mobilitas yang tinggi. Oleh karena itu perlu dilakukan penanganan untuk mengurangi dan menghilangkan toksisitas limbah logam berat dilingkungan. Salah satu cara remediasi logam berat yaitu dengan metode Solidifikasi/Stabilisasi. Penelitian ini dilakukan dengan tujuan untuk mengetahui pengaruh variasi komposisi campuran tanah liat (clay) dan poliakrilamida untuk memerangkap logam Cr(VI). Sifat mekanik dari campuran tanah liat-poliakrilamida-Cr(VI) dilihat dari uji kuat tekan. Pencampuran tanah liat dengan poliakrilamida dilakukan dengan menggunakan perbandingan 1:1, 1:2, 1:3, 1:4, 1:5 dan 1:6. Dari hasil uji kuat tekan terlihat bahwasemakin tinggi kandungan tanah liat dalam campuran maka nilai kuat tekan yang dihasilkan semakin kecil.


Keywords


Tanah liat; poliakrilamida; Cr(VI); Solidifikasi/Stabilisasi

Full Text:

PDF

References


Al-Kindi, G. Y. 2019. Evaluation the solidification/stabilization of heavy metals by Portland Cement. Journal of Ecological Engineering, 20(3): 91–100.

Almeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., Pereira, E. 2019. Chromium removal from contaminated waters using nanomaterials – A review. TrAC - Trends in Analytical Chemistry, 118: 277–291.

Fernandes, F., Lourenço, P. B. 2007. Evaluation of the Compressive Strength of Ancient Clay Bricks Using Microdrilling. Journal of Materials in Civil Engineering, 19(9): 791–800.

Kim, S., Palomino, A. M. 2011. Factors influencing the synthesis of tunable clay-polymer nanocomposites using bentonite and polyacrylamide. Applied Clay Science, 51(4), 491–498.

Morel, J. C., Pkla, A., Walker, P. 2007. Compressive strength testing of compressed earth blocks. Construction and Building Materials, 21(2): 303–309.

Owlad, M., Aroua, M. K., Daud, W. A. W., Baroutian, S. 2009. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200(1–4): 59–77.

Pandey, B., Kinrade, S. D., Catalan, L. J. J. 2012. Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. Journal of Environmental Management, 101: 59–67.

Soltani, A., Deng, A., Taheri, A., O’Kelly, B. C. 2019. Engineering reactive clay systems by ground rubber replacement and polyacrylamide treatment. Polymers, 11(10): 1–23.

Sun, T., Chen, J., Lei, X., Zhou, C. 2014. Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. Journal of Environmental Chemical Engineering, 2(1): 304–309.

Uddin, M. K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308: 438–462.

Xia, M., Muhammad, F., Zeng, L., Li, S., Huang, X., Jiao, B., Shiau, Y. C., Li, D. 2019. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. Journal of Cleaner Production, 209: 1206–1215.

Yoshinaga, M., Ninomiya, H., Al Hossain, M. M. A., Sudo, M., Akhand, A. A., Ahsan, N., Alim, M. A., Khalequzzaman, M., Iida, M., Yajima, I., Ohgami, N., Kato, M. 2018. A comprehensive study including monitoring, assessment of health effects and development of a remediation method for chromium pollution. Chemosphere, 201: 667–675.




DOI: http://dx.doi.org/10.33578/jpk-unri.v8i2.7861

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.